

BIOLOGIA

au Fâo. ANEM

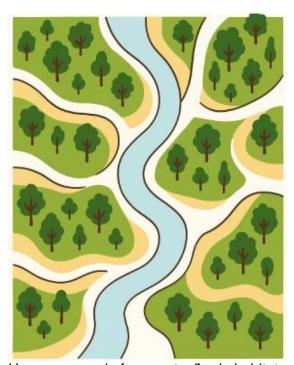
PROF. ENRICO BLOTA

oc

oin

otbric

Impactos humanos e perda de biodiversidade


O ser humano altera ecossistemas via desmatamento, poluição e exploração excessiva.

Consequências: extinção de espécies, desequilíbrio ecológico e perda de serviços ambientais.

O impacto humano sobre a biodiversidade é um dos maiores desafios ambientais da atualidade. Desde o início da agricultura e da urbanização, o ser humano modifica ecossistemas naturais em busca de recursos, espaço e energia. O desmatamento, por exemplo, remove vastas áreas de vegetação nativa, destruindo habitats e interrompendo interações ecológicas fundamentais. Espécies que dependem de ambientes específicos, como certas aves, anfíbios ou insetos, acabam perdendo suas áreas de reprodução e alimentação, o que leva à diminuição populacional e, em muitos casos, à extinção local ou total.

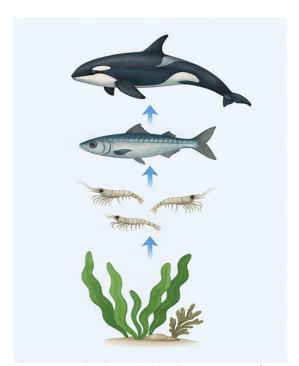
Além disso, a poluição dos solos, da água e do ar altera profundamente as condições ambientais, afetando organismos sensíveis e promovendo o desequilíbrio de cadeias alimentares. A exploração excessiva de recursos — como a pesca predatória, a caça e a retirada de madeira — reduz populações inteiras e ameaça o equilíbrio dos ecossistemas.

A perda de biodiversidade não afeta apenas os animais e plantas, mas também a própria sociedade humana. Isso porque a diversidade biológica fornece **serviços ecossistêmicos essenciais**, como a purificação da água, a polinização de plantas cultivadas, o controle natural de pragas e o equilíbrio do clima. Quando a biodiversidade é reduzida, esses serviços são comprometidos, gerando impactos econômicos e sociais significativos.

Um esquema de fragmentação de habitats

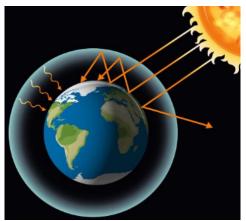
Portanto, compreender e mitigar os impactos humanos sobre o meio ambiente é uma necessidade urgente. A conservação da biodiversidade depende da adoção de práticas sustentáveis, reflorestamento, preservação de áreas naturais e políticas públicas que equilibrem o desenvolvimento econômico com o respeito à natureza.

Para pensar: Cite dois exemplos de como o desmatamento afeta a biodiversidade e explique brevemente.


Resposta: Fragmentação de habitats leva à extinção e alteração da diversidade genética; alteração do ciclo da água, que leva a impactos sobre espécies e sobre à atmosfera e umidificação planetária.

Ciclos biogeoquímicos e fluxo de energia

Ciclos de carbono, oxigênio, nitrogênio e água mantêm o equilíbrio do planeta. Energia flui nas cadeias alimentares de produtores a consumidores.


Os ciclos biogeoquímicos são processos naturais que garantem a circulação e a transformação de elementos químicos essenciais à vida, como carbono, nitrogênio, fósforo e água. Esses elementos se movem entre os seres vivos e o ambiente físico, mantendo o equilíbrio ecológico do planeta. O ciclo da água, por exemplo, envolve evaporação, condensação e precipitação, assegurando a disponibilidade hídrica nos ecossistemas. O evento de **percolação**, garante que a água chegue aos lençóis subterrâneos. Já o ciclo do carbono regula a quantidade desse elemento na atmosfera, sendo influenciado pela fotossíntese e pela respiração dos seres vivos. O fluxo de energia, por sua vez, ocorre nas cadeias alimentares, partindo dos **produtores** (**plantas e algas**), que captam a energia solar, até os **consumidores e decompositores**. Diferente da matéria, a energia não é reciclada: ela flui em um único sentido, sendo transformada e parcialmente perdida em forma de calor a cada nível trófico. A seguir, uma cadeia alimentar, onde a base terá um nível energético alto, sustentando a cadeia inteira.

Um exemplo de cadeia alimentar aquática

A compreensão desses ciclos é fundamental para o entendimento da sustentabilidade ambiental. Atividades humanas, como a queima de combustíveis fósseis e o uso excessivo de fertilizantes, alteram profundamente esses processos, contribuindo para o aquecimento global e a eutrofização de ambientes aquáticos. A seguir, entenda o efeito estufa.

Funcionamento do efeito estufa

Principais "gases estufa" e ações antrópicas nos ciclos

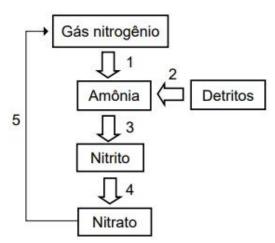
*Metano

(Fermentação entérica, arroz, lixão)

*Óxido nitroso

(Fertilizantes, dejetos de animais)

*Vapor d'água

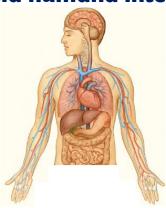

(Loop climático - ciclo de retroalimentação)

"mais calor → mais vapor → mais efeito estufa → mais calor"

*Gás carbônico

(Queima de combustíveis fósseis, desmatamento)

O ciclo do nitrogênio


O ciclo do nitrogênio possui diversas etapas (ENEM 2023)

Para pensar: Qual a diferença entre fluxo de energia e ciclo de matéria?

Resposta: Energia flui em uma direção (seres perdem calor) de forma unidirecional. A matéria cicla, entrando e saindo dos componentes bióticos e abióticos.

Fisiologia humana integrativa

Os sistemas circulatório, respiratório, digestório e excretor trabalham integrados. Homeostase mantém o equilíbrio interno.

O corpo humano funciona de maneira integrada, com diversos sistemas trabalhando de forma coordenada para garantir o equilíbrio interno, conhecido como **homeostase**. O sistema respiratório fornece oxigênio para as células e remove o dióxido de carbono, enquanto o sistema circulatório transporta esses gases e nutrientes por todo o organismo. O sistema digestório transforma os alimentos em moléculas simples, fornecendo energia, e o sistema excretor elimina resíduos metabólicos, evitando o acúmulo de substâncias tóxicas.

Quando um desses sistemas é comprometido, todo o corpo é afetado. Por exemplo, uma falha respiratória pode alterar o pH sanguíneo, interferindo na função de enzimas e no metabolismo celular. A homeostase é mantida por mecanismos de controle nervoso e hormonal, que ajustam continuamente parâmetros como temperatura, pressão arterial e níveis de glicose.

Anidrase Carbônica $CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3$

Regulação pelo sistema respiratório

Regulação pelo sistema renal

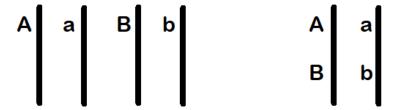
Figura 1: O H, em excesso no plasma, é tamponado pelo HCO₃ formando o ácido carbônico (H₂CO₃); este, pela ação da anidrase carbônica, enzima presente principalmente nas hemácias, transforma-se nos produtos CO₂ e H₂O; desse modo, as formas finais do ácido podem ser reguladas pelo sistema respiratório (eliminação ou retenção de CO₂ pela respiração) e através da excreção renal do H.

Fonte: https://blog.centerlab.com/centernews_149/

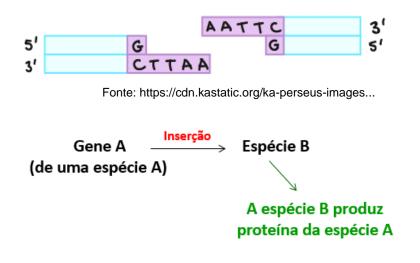
Compreender essa integração é essencial para entender tanto o funcionamento do corpo saudável quanto o surgimento de doenças, que geralmente decorrem da quebra dessa harmonia fisiológica.

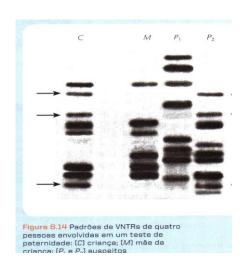
Para pensar: Explique como o sistema respiratório influencia a homeostase relacionada ao pH sanguíneo. O que ocorre quando os níveis de CO₂ aumentam no sangue?

Resposta: O oxigênio entra e o CO₂ sai, mantendo pH e pressão sanguínea. Uma consequência dos níveis de CO₂ aumentados é a hiperventilação, a qual aumenta a velocidade de eliminar esse gás.


Genética e biotecnologia aplicada

Leis da genética, genes, alelos, dominante, recessivo, entre outros termos são importantes neste tópico. Em biotecnologia, atenção para os transgênicos, clonagem e CRISPR-CAs9.


A genética estuda a hereditariedade e as variações dos organismos, baseando-se na estrutura e função do **DNA e do RNA**. O DNA armazena as informações genéticas, enquanto o RNA atua na produção de proteínas, fundamentais para todas as funções celulares. Mutações — alterações na sequência do DNA — podem gerar novas características, doenças genéticas ou adaptações evolutivas. Há também as mutações cromossômicas numéricas e estruturais.


Segunda lei de Mendel e Linkage, diferenças fundamentais

A biotecnologia utiliza esse conhecimento para modificar organismos e desenvolver produtos úteis ao ser humano. Um dos maiores avanços foi a produção de **insulina humana recombinante** por bactérias geneticamente modificadas, revolucionando o tratamento do diabetes. Outras aplicações incluem **organismos transgênicos**, **clonagem terapêutica** e o uso da tecnologia **CRISPR-Cas9**, que permite editar genes de forma precisa.

Enzimas de restrição, transgenia e testes de DNA

A técnica da CRISPR-CAs9



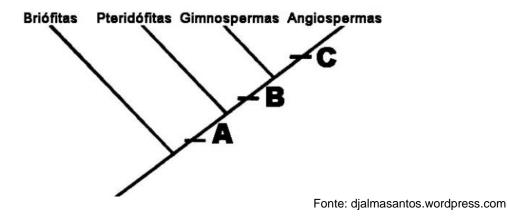
Figura 1: esquema representativo da CRISPR-Cas9

O RNA guia é responsável por encontrar a sequência exata de DNA que precisa ser editada, enquanto a Cas9 corta o DNA nessa região específica. Uma vez que o corte é feito, os cientistas podem "editar" a sequência genética, seja removendo, adicionando ou corrigindo partes do DNA.

Fonte: https://www.jovenscientistasbrasil.com.br/...

Essas ferramentas trazem enormes benefícios, mas também levantam questões éticas e ambientais. Por isso, o uso responsável da biotecnologia é fundamental para garantir que o progresso científico caminhe junto com a segurança e a ética.

Para pensar: Dê um exemplo de aplicação da biotecnologia na medicina endócrina.


Resposta: Produção de insulina e hormônio do crescimento humano; recombinantes em bactérias. Essa técnica usa plasmídeos recombinantes que passam a sintetizar os hormônios humanos.

Botânica e adaptações vegetais

Algumas adaptações fundamentais das plantas são: xerófitas, hidrófitas e plantas de clima temperado (decíduas ou caducifólias).

As plantas apresentam grande diversidade morfológica e anatômica, refletindo sua capacidade de adaptação aos diferentes ambientes da Terra. Atenção para a evolução dos vegetais e suas adaptações.

Ciclo de vida de uma pteridófita

Fonte: https://escolakids.uol.com.br/ciencias/pteridofitas.htm

As **raízes** são responsáveis pela fixação e absorção de água e sais minerais; o **caule** garante sustentação e transporte de seiva; e as **folhas** realizam a fotossíntese (no parênquima clorofiliano – Paliçádico e Lacunoso), essencial para a produção de energia.

De acordo com o ambiente, as plantas desenvolvem adaptações específicas:

Pneumatóforos: Raízes de plantas de manguezais, adaptadas às trocas gasosas com o ar, já que o solo é pobre em O₂.

Xerófitas (ambientes secos): possuem cutícula espessa, folhas reduzidas e raízes profundas, como os cactos.

Hidrófitas (ambientes aquáticos): apresentam tecidos com ar (aerênquimas) e folhas finas, como a vitória-régia.

Plantas de clima temperado: perdem folhas no inverno para reduzir a perda de água.

Essas adaptações demonstram a impressionante capacidade evolutiva dos vegetais e sua importância ecológica, já que sustentam as cadeias alimentares e equilibram os gases atmosféricos por meio da fotossíntese.

Para pensar: Cite quatro adaptações de uma planta xerófita.

Resposta: Cutícula espessa para reduzir perda de água; folhas modificadas em espinhos; reserva de água em parênquima aquífero; fechamento estomático rápido.

Microbiologia e imunologia

Estudo dos vírus, bactérias, protozoários, fungos, vermes e outros parasitas, bem como do sistema imunológico (soros, células, anticorpos e vacinas).

A microbiologia estuda organismos microscópicos, como vírus, bactérias, protozoários e fungos. Muitos desses seres são essenciais para a vida — participam da decomposição, da fixação de nitrogênio e até da digestão humana —, mas outros podem causar doenças.

O **sistema imunológico** atua como defesa natural do corpo contra agentes patogênicos. Ele reconhece substâncias estranhas e produz **anticorpos** e **células de defesa** específicas. As vacinas estimulam a **imunidade ativa**, fazendo o corpo produzir seus próprios anticorpos de forma controlada. Já na **imunidade passiva**, os anticorpos são fornecidos prontos, como ocorre com o leite materno ou com soro antiofídico.

Característica	Vacina	Soro	IgM	IgG
O que contém	Antígenos (vírus/bactérias enfraquecidos ou mortos)	Anticorpos prontos	Anticorpos da fase inicial da infecção	Anticorpos da fase tardia ou memória
Tipo de imunidade	Ativa	Passiva	-	-
Tempo para agir	Demorado	Imediato	Produzido logo no início da infecção	Surge depois, mas dura mais
Duração da proteção	Longa	Curta	Curta duração	Longa duração
Quando usar	Antes da doença (prevenção)	Depois da exposição (tratamento)	Detecta infecção recente	Indica infecção passada ou imunidade

A compreensão desses mecanismos é fundamental para prevenir doenças, desenvolver medicamentos e promover a saúde pública, especialmente diante de novos vírus emergentes e da resistência bacteriana a antibióticos.

Para pensar: Qual a diferença entre linfócitos B, TCD4, TCD8 e os linfócitos de memória?

Resposta: Os Linfócitos **B**: Diferenciam-se em plasmócitos e passam a produzir anticorpos, que neutralizam antígenos. Os Linfócitos **TCD4** (T auxiliares): coordenam a resposta imune, ativando linfócitos B e TCD8. Os Linfócitos **TCD8** (T citotóxicos): destroem células infectadas ou tumorais. Os Linfócitos **de memória**: permanecem no organismo após a infecção e garantem resposta rápida em um novo contato com o mesmo antígeno.

Ecologia humana e doenças

Alterações ambientais favorecem doenças transmitidas por animais e causadas por diversos patógenos (agentes etiológicos).

A ecologia humana estuda a relação entre o ser humano e o ambiente, mostrando como nossas ações influenciam a saúde dos ecossistemas — e, consequentemente, a nossa própria saúde. Uma das consequências dessas interações é o aumento de muitas doenças.

O desmatamento, a urbanização desordenada e o tráfico de animais silvestres aproximam espécies que antes viviam isoladas, favorecendo o salto de vírus e bactérias entre hospedeiros. A **dengue**, por exemplo, é uma doença urbana relacionada ao mosquito *Aedes aegypti*, cuja proliferação é intensificada pelo acúmulo de água em ambientes urbanos e pela falta de saneamento.

Outros exemplos incluem a **leptospirose** (transmitida pela urina de ratos), a **raiva** e até doenças mais recentes como a **COVID-19**, que tem origem zoonótica. Essa relação mostra que a saúde humana depende diretamente da saúde ambiental e do equilíbrio ecológico, reforçando a importância do conceito de "**Saúde Única**" (One Health), que integra meio ambiente, animais e seres humanos em uma mesma abordagem preventiva.

Algumas doenças fundamentais:

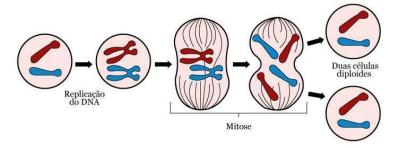
Doença	Agente transmissor / Vetor	Forma de transmissão
Raiva	Cães, gatos, morcegos	Mordida ou arranhão
Leptospirose	Ratos	Contato com urina em água ou lama
Toxoplasmose	Gatos	Fezes de gato, água e alimentos
Brucelose	Bovinos, caprinos, suínos	Leite cru ou carne malcozida
Teníase / Cisticercose	Porcos e bois	Carne contaminada; ovos da Taenia solium
Leishmaniose	Mosquito <i>Lutzomyia</i> (Mosquitopalha)	Picada do mosquito
Febre amarela	Mosquito Aedes aegypti	Picada do mosquito
Hantavirose	Roedores silvestres	Inalação de fezes/urina secas
Doença de Chagas	Barbeiro (<i>Triatoma</i>)	Picada e fezes do inseto; ingestão
Malária	Mosquito <i>Anopheles</i> (mosquito prego)	Picada do mosquito
Esquistossomose	Caramujo (<i>Biomphalaria</i>)	Penetração das larvas na pele em água contaminada

Para pensar: Como prevenir a doença de chagas e a esquistossomose?

Resposta: A prevenção da **doença de Chagas** envolve principalmente o controle do barbeiro, inseto transmissor da doença. Isso inclui manter a casa livre de frestas e buracos, usar telas em portas e janelas **e** inspecionar o ambiente doméstico regularmente. Além disso, é importante higienizar bem frutas e verduras que possam estar contaminadas pelo inseto. Já a prevenção da

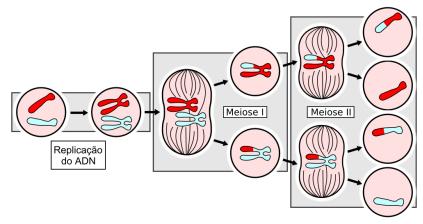
esquistossomose se baseia em evitar o contato com água doce contaminada, como rios e lagos em áreas endêmicas. É essencial melhorar o saneamento básico, garantindo tratamento adequado de esgoto, e realizar o controle de caramujos, que são o hospedeiro intermediário do parasita. Também ajuda o uso de calçados e proteção ao trabalhar em áreas alagadas.

Citologia e metabolismo celular



Organelas, mitose, meiose, respiração celular, fermentação e fotossíntese são alguns dos assuntos mais importantes deste tema.

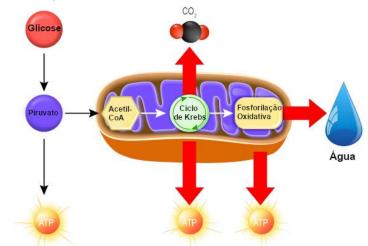
A **citologia** é o ramo da biologia que estuda as células, as menores unidades estruturais e funcionais dos seres vivos. As células podem ser **procarióticas**, mais simples e sem núcleo definido, ou **eucarióticas**, com núcleo e organelas membranosas especializadas. Cada organela possui funções específicas: as **mitocôndrias** produzem energia, o **retículo endoplasmático** sintetiza proteínas e lipídios, e o **núcleo** armazena o material genético.


Os processos de **mitose e meiose** são fundamentais para o ciclo celular. A mitose (equacional) gera duas células-filhas idênticas, importante para o crescimento e a regeneração de tecidos. Já a meiose (reducional e com crossing-over) forma quatro células geneticamente diferentes, reduzindo o número de cromossomos e garantindo a variabilidade genética nas espécies sexuadas. Usada, principalmente, para formar gametas nos animais e esporos nos vegetais.

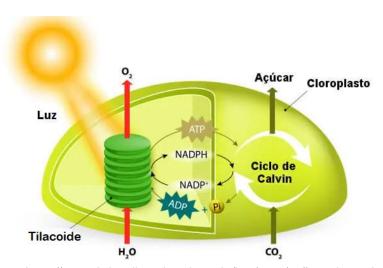
O processo geral da mitose

Fonte: https://www.educamaisbrasil.com.br/enem/biologia/mitose

O processo geral da meiose



Fonte: https://pt.wikipedia.org/wiki/Meiose#/media/Ficheiro:MajorEventsInMeiosis_variant_pt.svg

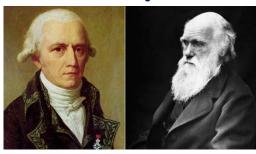

O metabolismo celular, que inclui a **respiração celular, fermentação, quimiossíntese** e a **fotossíntese**, permite que a célula obtenha energia e matéria para suas funções. Na respiração, a glicose é degradada para liberar ATP, enquanto na fotossíntese a energia solar é convertida em energia química, sustentando a base da vida na Terra.

A respiração e a fermentação, inicialmente, quebram a glicose

Fonte: https://mundoeducacao.uol.com.br/biologia/respiracao-celular.htm

A fotossíntese possui uma fase dependente da luz, que quebra a água e libera O2

Fonte: https://s3.static.brasilescola.uol.com.br/img/2019/04/fotossintese.jpg

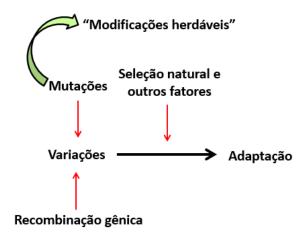

Não se esqueça que a fixação do gás carbônico ocorre na fase escura (química) e que isso ajuda no equilíbrio das taxas de CO₂ do planeta.

Para Pensar: Qual a principal função de todas as organelas celulares?

Resposta: As mitocôndrias produzem energia por meio da respiração celular, enquanto o retículo endoplasmático participa da síntese de proteínas e lipídios. O aparelho de Golgi modifica, armazena e transporta substâncias, e os lisossomos digerem resíduos e organelas danificadas. Os ribossomos são responsáveis pela síntese de proteínas, e os cloroplastos, presentes nas células vegetais, realizam a fotossíntese. Os centríolos organizam o fuso mitótico durante a divisão celular, e os peroxissomos decompõem peróxidos e outras substâncias tóxicas. Já os vacúolos vegetais armazenam água, nutrientes e substâncias de reserva, além de ajudar na manutenção da pressão interna da célula, conferindo suporte à estrutura vegetal.

Evolução

Seleção natural e outras teorias, bem como a formação de espécies novas ao longo do tempo são fundamentais para um bom entendimento conteúdo.


A **teoria da evolução** explica como as espécies se modificam ao longo do tempo. A **seleção natural**, proposta por Charles Darwin, é o principal mecanismo evolutivo: indivíduos com características mais adequadas ao ambiente têm maiores chances de sobreviver e se reproduzir, transmitindo seus genes às próximas gerações. Lamarck propôs a Lei do uso e desuso e Lei da transmissão de caracteres adquiridos.

Além da seleção natural, **mutações genéticas**, **recombinação gênica**, **deriva genética** e **migrações** atuam na variabilidade genética das populações.

Dois termos importantes a serem lembrados são, o **mimetismo**, onde um ser imita outro retirando vantagem disso; e a **camuflagem**, onde um ser imita o meio, se protegendo da predação e facilitando a sua alimentação.

A **genética de populações** estuda essas variações em nível coletivo, analisando a frequência de genes e como ela muda com o tempo.

A teoria moderna da evolução leva em conta os seguintes processos

ATENÇÃO

Homologia

- -O que é: Semelhanças em estruturas por terem um ancestral comum.
- -Origem: irradiação adaptativa.
- -Exemplo: Membros anteriores de diferentes mamíferos, como a nadadeira da baleia e a asa do morcego, que têm a mesma origem embrionária, mas funções distintas.

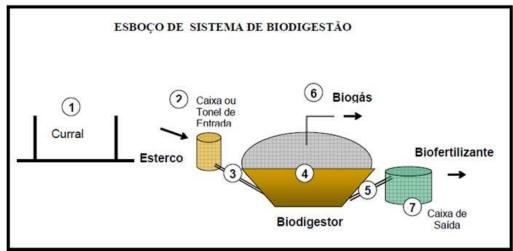
Analogia

- -O que é: Semelhanças em estruturas que têm origem embrionária diferente.
- -Origem: Convergência evolutiva (convergência adaptativa ou evolução convergente).
- -Exemplo: Asas de um inseto e asas de um pássaro, que servem para voar, mas possuem origens embrionárias completamente diferentes.

Esses processos explicam a origem da biodiversidade e como novas espécies surgem (especiação). A compreensão da evolução é essencial para áreas como medicina (resistência bacteriana), agricultura (melhoramento genético) e conservação da natureza (adaptação às mudanças climáticas).

Para pensar: O que é especiação simpátrica e alopátrica?

Resposta: A especiação é o processo pelo qual surgem novas espécies a partir de uma população ancestral. Na **especiação alopátrica**, ocorre um **isolamento geográfico** que impede o cruzamento entre grupos da mesma espécie, fazendo com que, com o tempo, se diferenciem e se tornem espécies distintas. Já na **especiação simpátrica**, novas espécies surgem **no mesmo local**, sem barreiras geográficas, geralmente por diferenças de comportamento, dieta ou reprodução que reduzem o cruzamento entre os indivíduos.


Sustentabilidade e biotecnologia ambiental

Energias limpas, biocombustíveis, tratamento de resíduos e outros temas.

A **sustentabilidade** busca atender às necessidades do presente sem comprometer as gerações futuras, equilibrando o crescimento econômico com a preservação ambiental. Nesse contexto, a biotecnologia ambiental surge como uma aliada poderosa, utilizando organismos vivos para tratar resíduos, reduzir poluição e gerar energia limpa.

Os **biodigestores**, por exemplo, aproveitam resíduos orgânicos para produzir **biogás** (combustível renovável) e biofertilizantes, diminuindo a emissão de gases poluentes. Outras tecnologias incluem o uso de **bactérias degradadoras de petróleo** em acidentes ambientais e o desenvolvimento de plásticos biodegradáveis.

Fonte: https://www.revistaea.org/pf.php?idartigo=1248

Essas soluções mostram que é possível conciliar inovação e responsabilidade ecológica. A transição para um modelo de desenvolvimento sustentável depende de educação ambiental, políticas públicas e da adoção de práticas conscientes por parte das empresas e dos consumidores.

A **biorremediação** é um processo natural de descontaminação que utiliza seres vivos, como microrganismos (bactérias, fungos), plantas e suas enzimas, para degradar ou remover poluentes de áreas contaminadas no solo, na água ou ar.

Para pensar: Qual gás é liberado por um biodigestor e quais microrganismos atuam para isso?

Resposta: Um biodigestor libera **biogás**, uma mistura de gases que contém, principalmente **metano e gás carbônico.** Essa decomposição é realizada por uma comunidade de **microrganismos anaeróbicos** (sem oxigênio), que inclui **bactérias e arqueias**, especialmente as bactérias metanogênicas, que atuam na fase final do processo para gerar o metano.

Fisiologia vegetal e produção de alimentos

A fisiologia vegetal estuda o funcionamento das plantas, especialmente os processos que garantem seu crescimento e produção.

O transporte de seiva — bruta e elaborada — é realizado por vasos condutores (xilema e floema), garantindo a distribuição de água, sais minerais e nutrientes. A adaptação das plantas ao solo e ao clima também influencia diretamente a produtividade agrícola, determinando quais espécies se desenvolvem melhor em cada região.

A ação dos hormônios vegetais é fundamental para o desenvolvimento das plantas. Auxinas (crescimento, partenocarpia e outras funções), giberelinas (partenocarpia, germinação e outras funções), ABA (fechamento estomático no estresse hídrico, inibe crescimento e germinação e outras funções), citocininas (divisões celulares, retardam a senescência e outros papeis) e etileno (amadurecimento de frutos e abscisão foliar) são os principais hormônios.

O entendimento da ação dos chamados hormônios vegetais (moléculas produzidas pelas plantas) tornou-se uma ferramenta importante para ter uma agricultura mais produtiva e menos danosa ao ambiente. Nas últimas décadas, aumentou a aplicação de reguladores de crescimento na produção agrícola, para melhorar desde a germinação de sementes e o crescimento de plantas até estimular ou retardar a maturação de frutos. O uso racional dos nossos recursos naturais é alternativa indispensável tanto para a produção de alimentos quanto para uma agricultura sustentável.

Fonte: https://cienciahoje.org.br/artigo/hormonios-vegetais-na-agricultura

Atenção para uma ação fundamental, ligada às auxinas.

No fototropismo, o crescimento vai a favor ou contra à luz

A compreensão da fisiologia vegetal permite aprimorar técnicas de cultivo, manejo e irrigação, favorecendo uma agricultura mais sustentável e produtiva, capaz de alimentar uma população em constante crescimento.

Para pensar: Explique a importância da fotossíntese na agricultura.

Resposta: Produz glicose que alimenta plantas, humanos e animais. A glicose é armazenada em órgãos vegetais como raízes, caules e folhas, na forma de **amido**. Os órgãos vegetais possuem um tecido chamado **parênquima amilífero**, responsável por esse armazenamento.

Interações ecológicas

São diversas relações ecológicas, como a predação, competição, parasitismo, mutualismo e comensalismo.

As **interações ecológicas** ocorrem quando diferentes espécies convivem em um mesmo ambiente, influenciando-se mutuamente. Elas podem ser **harmônicas** (beneficiam um ou ambos os organismos) ou **desarmônicas** (prejudicam um deles). Podem ser intraespecíficas (uma só espécie envolvida) ou interespecíficas (duas ou mais espécies envolvidas).

Classificações das relações ecológicas	Tipos de relações ecológicas
	Sociedade
Relações intraespecíficas harmônicas	Colônia
	Competição
Relações intraespecíficas desarmônicas	Canibalismo

	Mutualismo	
Relações interespecíficas harmônicas	Comensalismo	
	Amensalismo	
Doloo ao intercono (ficeo	Parasitismo	
Relações interespecíficas desarmônicas	Predação	
	Competição	

Fonte: https://static.biologianet.com/2019/12/7-tabela.jpg

Na predação (+-), um organismo se alimenta de outro; na competição interespecífica (--), diferentes espécies disputam os mesmos recursos. O parasitismo (+-) envolve um organismo que vive às custas de outro, causando-lhe dano. Já o mutualismo (++) representa uma relação de cooperação — como a das abelhas com as flores, essenciais para a polinização —, enquanto o comensalismo (0+) beneficia uma espécie sem afetar a outra, como as rêmoras que se alimentam dos restos deixados por tubarões.

Essas relações mantêm o equilíbrio ecológico e a estabilidade dos ecossistemas, mostrando que todas as formas de vida estão interconectadas em redes complexas de dependência.

Para pensar: Dê um exemplo de mutualismo entre planta e animal.

Resposta: Abelha e flor: abelha obtém néctar e pólen (fontes de alimentação) e a flor é polinizada. Relação de benefício mútuo (++).

Biomas brasileiros e conservação

São 6 os biomas brasileiros, além do bioma marinho: Amazônia, Cerrado, Mata Atlântica, Pantanal, Caatinga, Pampa e seus desafios.

Fonte: https://planetabiologia.com/...

Bioma e outras áreas	Tipo: no mundo	Onde ocorre	Características
Pampas	Pradaria	Região sul do Brasil (principalmente)	-Gramíneas -Bosques isolados -Inverno úmido
Caatinga	Semideserto e campo (quente)	Nordeste do Brasil (principalmente)	-Xeromorfismo (ex. cáctus) -Bioma endêmico do Brasil
Cerrado	Savana (campo com árvores espaçadas de caules tortos e cascas grossas)	Região centro-oeste e arredores	-Xeromorfismo (ex. folhas coriáceas) -Solo aluminotóxico
Pantanal	Mata, campos e savana.	Mato grosso, Mato grosso do sul, Bolívia e Paraguai	-Planície inundável -Berço de aves migratórias -Elevada biodiversidade de aves
Floresta Amazônica	Floresta tropical pluvial	Vários países da América do Sul e região norte do Brasil	-Estratificada (em camadas) -Perenifólia (sempre verde) -Latifoliada (folhas largas) -Alta evapotranspiração -Elevadíssima biodiversidade

*Representação de uma área da caatinga.

Fonte: Pixabay.com

*Na caatinga, há muitas espécies endêmicas. Entre elas algumas espécies de cactáceas, mamíferos e diversas aves.

*No agreste, predomina a caatinga. É considerado uma zona de transição (ecótone), localizado entre o sertão nordestino e a zona da mata. É semiárido.

Bioma e outras áreas	No mundo	Localização	Características
Mata atlântica	Floresta pluvial tropical	Do RS até o nordeste	-De modo geral, é bem semelhante à floresta amazônica. Em certas áreas do sul, há espécies caducifólias.
*Mata de araucárias	Floresta temperada úmida	Rio grande do Sul, Santa Catarina, Paraná e São Paulo	-Árvore araucária predomina -Gralha azul dispersa o pinhão, semente da árvore. -Associada à mata atlântica -Inverno frio
*Mata dos cocais		Entre a região norte e nordeste do Brasil	-Zona de transição -Predomínio de palmeiras (babaçu, carnaúba, açaí) -Entre a floresta amazônica e a caatinga
*Manguezal	Transição entre o mar e o ambiente terrestre. Ocorre em algumas áreas do mundo.	De Santa Catarina até o nordeste.	-Solo salino com pouco O₂ -Raízes pneumatóforos (trocas gasosas com o ar) -Berço de aves migratórias

^{*}Áreas importantes do Brasil, porém, não são consideradas biomas.

A conservação desses biomas é essencial para manter os recursos hídricos, o equilíbrio climático e os serviços ecossistêmicos. Entretanto, a **expansão agropecuária**, as **queimadas** e o **desmatamento ilegal** ameaçam seriamente essa riqueza natural. A proteção dos biomas exige políticas públicas eficazes, educação ambiental e o engajamento da sociedade na defesa do patrimônio natural brasileiro.

Para pensar: Qual é o principal risco para a biodiversidade do Cerrado?

Resposta: Queimadas e expansão agrícola.

